Addition Behavior of a Numerical Semigroup 23

نویسنده

  • Maria Bras-Amorós
چکیده

— In this work we study some objects describing the addition behavior of a numerical semigroup and we prove that they uniquely determine the numerical semigroup. We then study the case of Arf numerical semigroups and find some specific results. Résumé (Comportement de l’addition dans un semi-groupe numérique). — Dans ce travail, nous étudions des objets qui décrivent le comportement de l’addition dans un semi-groupe numérique, tout en montrant qu’ils le déterminent complètement. Ensuite, nous étudions le cas des semi-groupes numériques de type Arf et en donnons quelques résultats spécifiques.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Integers Nonrepresentable by a Generalized Arithmetic Progression

We consider those positive integers that are not representable as linear combinations of terms of a generalized arithmetic progression with nonnegative integer coefficients. To do this, we make use of the numerical semigroup generated by a generalized arithmetic progression. The number of integers nonrepresentable by such a numerical semigroup is determined as well as that of its dual. In addit...

متن کامل

Asymptotic behavior of size structured populations via juvenile-adult interaction∗

In this work a size structured juvenile-adult population model is considered. The linearized dynamical behavior of stationary solutions is analyzed using semigroup and spectral methods. The regularity of the governing linear semigroup allows to derive biologically meaningful conditions for the linear stability of stationary solutions. The main emphasis in this work is on juvenile-adult interact...

متن کامل

Numerical Semigroups and Codes

Anumerical semigroup is a subset ofN containing 0, closed under addition and with finite complement in N. An important example of numerical semigroup is given by the Weierstrass semigroup at one point of a curve. In the theory of algebraic geometry codes, Weierstrass semigroups are crucial for defining bounds on the minimum distance as well as for defining improvements on the dimension of codes...

متن کامل

Frobenius numbers of generalized Fibonacci semigroups

The numerical semigroup generated by relatively prime positive integers a1, . . . , an is the set S of all linear combinations of a1, . . . , an with nonnegative integral coefficients. The largest integer which is not an element of S is called the Frobenius number of S. Recently, J. M. Maŕın, J. L. Ramı́rez Alfonśın, and M. P. Revuelta determined the Frobenius number of a Fibonacci semigroup, th...

متن کامل

Classification of Monogenic Ternary Semigroups

The aim of this paper is to classify all monogenic ternary semigroups, up to isomorphism. We divide them to two groups: finite and infinite. We show that every infinite monogenic ternary semigroup is isomorphic to the ternary semigroup O, the odd positive integers with ordinary addition. Then we prove that all finite monogenic ternary semigroups with the same index...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005